RSS Feed
 找尋來自銀河系外未知的電波脈衝起源— 台灣宇宙電波爆廣角監測實驗 (BURSTT)介紹

找尋來自銀河系外未知的電波脈衝起源— 台灣宇宙電波爆廣角監測實驗 (BURSTT)介紹

在夜空中無數的眾星靜靜地掛在天上,隨著地球運轉畫出週而復始的規律軌道,看起來彷如萬古不變。這些星體大多已存在超過億萬年,讓人類的壽命和歷史相形見絀。但現代天文學利用先進的望遠鏡們進行涵蓋整個電磁波頻譜的觀測後,發現到宇宙其實相當熱鬧,像有大大小小不間斷的煙火般,有許多在人類可感知的時間幅度、從數年、數天、到轉瞬之間發生變化的天體現象,稱為瞬變(transient)天體。當中有些瞬變事件爆發短暫而劇烈,讓我們得以發現宇宙最奇異且高能的天體存在。例如大質量恆星在生命結尾耗盡核融合燃料時塌縮造成的超新星爆炸,它的亮度可以超過擁有千億顆恆星的星系,爆炸的核反應過程是宇宙各種貴重金屬的主要來源。 1960年代發現了會規律發射無線電波脈衝的脈衝星(pulsar),並了解它們是高速旋轉、由中子組成的緻密天體──中子星。另外有些X射線瞬變現象提供黑洞存在並撕裂和吸積周遭恆星和雲氣的證據,讓原本只存在於廣義相對論的理論中、即使光線也無法逃離的黑洞成為真實。觀測這些瞬變天體,不僅加深我們對宇宙和星體演化的認識,它們擁有的極端物理條件,如超高溫度、密度、強磁場、強重力,也可以試驗我們所了解的物理定律,擴展了人類對物質的認知與想像。
 探索宇宙中的光:了解星系的形成及演化

探索宇宙中的光:了解星系的形成及演化

當我們在沒有光害的的夜晚仰望天空,除了滿天星斗之外,映入眼簾的還有一條橫跨天際的銀帶,我們稱之為銀河。自古以來,人類就對這片璀璨的星海充滿好奇。古代的觀星者將銀河視為神話中的天河,承載著無數傳說與故事。而隨著科學的進步,我們逐漸揭開了銀河的神秘面紗,發現它其實是一個龐大的星系——我們現在稱之為銀河系。這個星系包含了數千億顆恆星,其中包括我們的太陽。
星系,顧名思義,就是由眾多恆星形成的系統。星系是在廣袤宇宙中的一座座小島。物質在此聚積、反應。氣體在此形成恆星,開始發光發熱。這些能量的輸出反過來影響宇宙的演化。一個星系裡由數百萬至數千億顆恆星,大量的氣體、星際塵埃、暗物質、以及在星系中心的超大質量黑洞組成。所有這些物質都受到引力的束縛而不會四處逸散。而我們的宇宙中,有著大大小小,特性各不同的數千億個星系。
如此巨大且複雜的系統,絕非憑空瞬間蹦出來的。天文學家利用各種望遠鏡和觀測技術,以及數值模擬計算,深入探索星系的結構、組成和動態,試圖了解星系如何形成及演化,同時揭示宇宙演化的全貌。這篇文章將簡要介紹何謂星系、我們目前對星系的認識、最新的研究進展,以及未來有望拓寬我們知識邊疆的探索。
 終極綠能-核融合簡介

終極綠能-核融合簡介

Ⅰ . 前言
這個夏天, 世界極不平靜。在臺灣七月底八月初的大雨造成不僅財務上的損失,更有不幸的傷亡。極端的高溫更是史上罕見,北京的水改道,就連夏威夷都有森林大火,極端氣候肆虐地球已經是新常態,這些異常的天氣也許都是人類自己造成的,姑且不論2050 零排碳是否能及時拯救地球,挽救人類免於環境惡化的災難。但做總比不做好,世界各國都朝這個方向努力。為了完成2050 零排碳的目標,各國把各種綠能推上檯面,例如:太陽能、地熱、風能,和傳統的核分裂電廠。核融合當然是一些科技先進國家的選項之一。筆者認為核融合是終極綠能,它應該在零排碳的計畫中擔任一定的角色,但是目前沒有商轉的核融合電廠。英國、中國和美國計劃在2040-2045 有小型的核融合發電廠,以加入零排碳的行列。所以2050 是核融合研發成果驗收的關鍵年;如果到時核融合無法參與零排碳的陣容,大規模的核融合研究大概也走到了盡頭。核融合的研發已經有將近一百年的歷史,從開始由一小群人在少數幾個國家內從事研究,到現在形成一股世界洪流,有成千上萬位科學家和工程師參與其中,橫跨數十個國家的研究人員努力地要完成核融合發電的目標。目前在所有的核融合裝置中離發電最近的是托克馬克(Tokamak),其他裝置的參數例如慣性(Inertial)核融合,仿星器(Stellarator)等,都比托克馬克落後一兩個數量級,所以第一代的核融合電廠最可能的是托克馬克電廠。第一代核融合電廠最有可能是用氘和氚做燃料,氘和氚是氫的同位素,這是因為相對於其他反應氘和氚融合反應的機率高,且所需溫度在20 keV 左右,是所有核融合反應中比較容易達成的。氚是有放射性的,它釋放出貝它粒子,氚的半衰期是12.33 年,因此氚是要小心處理的。
 漫談石墨烯超晶格

漫談石墨烯超晶格

1. 晶格與倒易晶格
為了介紹超晶格(superlattice),我們得先從晶格(lattice)談起。晶格是介紹固態物理最常見的出發點,廣義來說是指一群點所形成的陣列,可以是有限大,也可以是無限延伸,可以是規則,也可以是不規則。當然,固態物理所關心的晶格,指的是無窮延伸且規則分布的點。對於某個晶格,假如可以找到一組原始向量(primitive vector),使得任一個晶格點的位置向量,都可由這組原始向量的整數倍疊合而成,且無一例外,那麼這個晶格就是個布拉菲晶格(Bravais lattice)。這個定義也可以換句話說成:假如有一組原始向量是 \(\textbf{a} {1},\textbf{a} {2},\textbf{a} {3}\)(當然,若是二維晶格,就只需要 \(\textbf{a} {1},\textbf{a} {2}\)),使得考慮 \(n {1},n {2},n {3}\) 之所有整數後便能讓晶格向量(lattice vector)
\(\textbf{L}=n {1}\textbf{a} {1}+n {2}\textbf{a} {2}+n {3}\textbf{a} {3}\)      (1)
無一例外地描述了某個晶格的每個晶格點,則該晶格為布拉菲晶格。以對稱性質來分類的話(這其實是個涉及群論的大工程),三維空間只有十四種布拉菲晶格,二維則只有五個。常聽到的體心立方(bcc)與面心立方(fcc),就是十四種三維布拉菲晶格當中的兩種,而近年熱門的二維材料石墨烯(graphene),就是五種二維布拉菲晶格當中的一種:六方晶格(hexagonal lattice)。
(1) 2 3 4 ... 11 »