專業 物理
-
描繪質子內部立體風景的部分子物理
質子在101年前被發現時,與電子一樣被當作是構成世界的惟“二”的基本粒子。雖然在1930年代,科學家透過測量質子的磁偶矩,發現質子的g值並非狄拉克方程式所預測的值以後,才知道質子並非“基本粒子”,而是由更小的粒子所組成,但由於質子的體積極小,實在難以探究其內在的結構。直到五零年代末,美國物理學家羅伯特·霍夫施塔特(英語:Robert Hofstadter,1915年2月5日-1990年11月17日)才藉由電子-質子的彈性碰撞測量出質子的電磁形狀因子 (electromagnetic form factors)。這代表質子內的電荷有著特定的分佈。
-
下一世代質子次結構和強作用力的細緻解析 ─ 美國電子離子對撞機計畫
高能物理學家對於物質世界的瞭解,基於化約論的信念,期待化繁為簡,透過確認在不同尺度下的基本粒子種類,和它們的交互作用,來理解更上層較大尺度的物質結構。在1909年,Hans Geiger 和 Ernest Marsden利用放射性元素產生的α粒子撞擊金箔,觀察有大角度散射的事件,Ernest Rutherford由此結果,推論原子的結構是高度集中極小範圍的正電荷中心和大範圍分布的負電荷粒子,而非原先所想像正負電荷粒子均勻分布所構成,這就是有名的「拉賽福散射實驗」,發現了原子核的結構,也正式開啟了人類利用高能量粒子散射的實驗手段,來探索次原子結構的驚奇之旅。
-
寫佇天頂个名–尤金・帕克和以他命名的帕克太陽探測器
帕克太陽探測器 (Parker Solar Probe, PSP) 於2018年 8 月 12 日升空了!這是美國太空總署 (National Aeronautics and Space Administration, NASA) 的年度大事。在接下來七年的任務期間,帕克太陽探測器將環繞太陽24次來近距離觀測被稱作外日冕 (outer solar corona) 的太陽大氣。借助金星的萬有引力,它的軌道會逐漸縮小。它將在2025年最接近太陽,距離太陽中心僅有9.86個太陽半徑(690萬公里)。屆時它的速度將高達每秒192 公里,是光速的0.064%。這將寫下史上最接近太陽和最高速人造物體的雙料新紀錄。
-
新太空,站穩腳步再出發
新太空 (New Space) 通常泛指近年快速發展的太空商業化,相對於過去各國政府一向以國家機構主宰太空發展,現在私人企業扮演越來越重要的角色。然而預計太空產業將快速成長,下個十年將成長至數兆美元。
-
宇宙的漣漪-波暗物質
「暗物質」,顧名思義,不發光亦不反光,但提供重力。暗物質約佔宇宙總能量的27%,對星系形成和演化至關重要。然而,目前科學家仍無法在實驗室中直接量測到暗物質,僅能藉由觀測天體間的重力交互作用間接證明其存在。因此,暗物質究竟為何,甚至是否真的存在,無疑是 21 世紀最重要的科學問題之一。
-
穿透力十足的不速之客-渺子
“Who ordered that?” 當渺子(muon)1936 年被發現時,物理學家 Isidor Rabi(1944 年諾貝爾物理獎得主 ) 以如此的妙語評論它。
-
軸子強CP與暗物質的橋樑
軸子這個假想的粒子早在 1977 年就已提出來, 雖然實驗上一直未被偵測到,但是軸子的研究和軸子的搜尋在過去四十多年來一直沒有間斷過。這是因為暗物質的探索一直是宇宙學和粒子物理最熱門、最基本的研究課題,而軸子是宇宙暗物質一個理想的候選者,所以暗物質軸子的研究近年來更是方興未艾。
-
利用電子電路系統探索擾動熱力學物理
熱力學發展初期,與生活的經驗和應用息息相關,主要聚焦於如何從帶有大量熱能的環境取得動力,驅動工業發展。所有系統要取得動力,都受限於兩項定律,能量守恆、以及熱無法憑空轉成動力,分別稱為熱力學第一及第二定律。生活上經驗的系統,通常由巨量基本物質組成,在微觀上是十分巨大的系統,第二定律的本質,是封閉系統允許的微觀狀態數目 Ω,隨時間只增不減,或最多維持不變。
-
從鳥群與細菌群開始: 無序、有序、漲落、穩定與不穩定-Active soft matter
為了研究生物集體運動,統計力學與流體動力學被推廣,發展出新領域active soft matter。現在我們用active soft matter 中的標準觀念來理解細胞爬行,胚胎成長,細菌聚落,以及染色體在細胞核內的型態。
-
熱電於再生能源之運用
由於人類發現已經不能再無止盡的長期依賴石化能源,取而代之的則是發展再生能源。在諸多發展的再生能源研究中,因熱電材料具有熱電互相轉換功能,因此有了運用熱電材料將廢熱或再生能源轉換成電力的方案。
-
當摩擦起電效應不再惱人-摩擦奈米發電機的誕生與演化
摩擦奈米發電機發展至今,已被成功驗證不僅具能源收集功能,更因其本身轉換的電輸出會隨施加的環境因素程度而有所不同。即意味本身也可以用來感測施加的環境因素,且不需外部電源即可工作。這種特性,就是自驅動感測器 (Self-Powered Sensor) 的精髓。製作摩擦奈米發電機所需的設備及流程並不複雜,且元件的大小及規格可輕易變換,幫助其在不同領域的應用都可以提供切入點做結合。因此在這幾年已演變成機械能收集及自驅動感測器等研究領域最熱門的技術。
-
光能轉換成電能:材料的光、熱、電特性之影響
1839年,19歲的法國科學家亞歷山大.愛德蒙.貝克勒爾 (Alexandre-Edmond Becquuerel) 首先發現材料吸收光產生電壓的現象,即為目前熟知的光伏打效應 (Photovoltaic Effect);1961年,美國物理學家威廉.蕭克力 (William Shockley) 與德國物理學家漢斯.約阿希.奎瑟 (Hans-Joachim Queisser) 在美國貝克曼儀器公司的蕭克力半導體實驗室發展出單一p-n接面的太陽能電池轉換效率之物理模型:蕭克力-奎瑟極限 (Shockley-Qussier (S.-Q.) limit) [1]。
-
108年度諾貝爾化學獎與鋰離子電池之發明
早期鋰電池因其放電電壓與電流穩定而受矚目,然鋰金屬本身活性強,無法輕易加工與保存並使用,直至20世紀才漸漸使鋰電池進入實用階段。1至此鋰電池仍為一次電池,意即其放電完即無法再使用。因於充電將導致鋰金屬枝晶(lithium dendrite)產生,此將使電池短路且再充電效率相當差。鋰離子電池(lithium-ion battery)乃將鋰電池僅可一次使用之缺點改良,而可再充電重複使用。
-
系外行星科學:天文新時代
我們並不孤單。筆者撰寫本文時,天文學家已發現4151顆在太陽系以外的『系外行星』。這是一個驚人的數字:首顆系外行星在1992年才被發現 (一顆環繞脈衝星的行星),而第一個圍繞類似太陽恆星的系外行星則是1995年發現的。即使在2011年,當筆者正在完成博士論文時,系外行星數量也才約為600顆。在不到十年的時間裡,系外行星數量增加了7倍。而2019年台灣也透過國際天文協會命名了一顆系外行星『水沙連』。觀測技術不斷的進步,使得系外行星科學日新月異。它的快速發展使得我們幾乎每天都會發現新的星球、從未想過的新世界。人類對生命起源以及尋找『地球 2.0』的好奇心促使了系外行星科學迅速成為最令人興奮的天文領域之一。
-
聆聽宇宙氣笛 垂釣系外行星
人類對於太陽系以外是否有第二顆地球甚至系外生命的存在,一直感到莫名的好奇。早在18世紀,英國藝術家John Pass以雕刀勾勒出他所想像其他太陽系的樣貌,他奇想中的系外行星系統好像充斥著整個宇宙,卻和太陽系內的行星分佈大相逕庭
-
探索量子與古典間的灰色地帶
在本文中我們探討了,如何透過哈密頓量係綜集合模擬一個開放性量子系統時間演化藉此展現出非古典特性。
-
量子追想曲--成大前沿量子科技研究中心
成大前沿量子科技研究中心的主要三大研究主軸:量子理論、量子材料、量子元件與電腦 都是當前量子科技之重大問題。
-
眼見為憑:黑洞確實存在
4組獨立團隊所得到黑洞剪影圖像的成像結果都非常類似。基於這種相似性,我們做成的結論是:「得到的圖像有非常高的可靠度。」
-
望向天際的大眼睛—格陵蘭望遠鏡裡的天線與接收機系統
這裏透過介紹格陵蘭望遠鏡接收機系統的設計測試與實際部署,讓大家更進一步了解格陵蘭望遠鏡。
-
望向天際的大眼睛 — 格陵蘭計畫初始
更多的望遠鏡一起參與 VLBI的觀測將會大大地提高訊號的靈敏度,而且只要能夠把這些位在地球不同角落的望遠鏡全部連線成為 VLBI 陣列,將會形成一座具有地球一般大小的「合成孔徑望遠鏡」,其所提供的影像解析力足以「看清楚」黑洞是否存在。
-
凝視時空的深淵:黑洞剪影的故事
黑洞影像的成功觀測也正式宣告了黑洞在事件視界尺度的天文物理研究即將進入讓人振奮的新時代!
-
如何跟物理做朋友 ?
當一個人忘了學校裡所學的一切,如果還剩下什麼,那個剩下的就是教育。
-
光電效應也可以照相!
藉由同步輻射的掃描式光電子能譜顯微儀我們可以系統性地探討單層凡得瓦材料與基材的交互作用,以及單層凡得瓦材料的本徵及其異質介面的物理化學結構。
-
光電效應大展身手:角解析光電子能譜學
利用光電子能譜技術,發現了材料中 Chemical Shift 的現象,這個發現對於材料科學發展的影響,悠久而深遠,時至今日,科學家仍舊持續利用這項技術,探測各種新穎材料的原子鍵結狀態,為各種材料的發現做出貢獻。
-
點亮台灣之光,耀眼全世界:國家同步輻射研究中心
同步輻射讓科學研究可以往更小的尺度邁進,支持著許多研究團隊進行基礎的科學研究。